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Abstract

Structure reasoning is a fundamental capability of large language
models (LLMs), enabling them to reason about structured common-
sense and answer multi-hop questions. However, existing bench-
marks for structure reasoning mainly focus on horizontal and co-
ordinate structures (e.g. graphs), overlooking the hierarchical rela-
tionships within them. Hierarchical structure reasoning is crucial
for human cognition, particularly in memory organization and
problem-solving. It also plays a key role in various real-world tasks,
such as information extraction and decision-making. To address this
gap, we propose HiBench, the first framework designed to system-
atically benchmark the hierarchical reasoning capabilities of LLMs
from initial structure generation to final proficiency assessment.
It encompasses six representative scenarios, covering both funda-
mental and practical aspects, and consists of 30 tasks with varying
hierarchical complexity, totaling 39,519 queries. To evaluate LLMs
comprehensively, we develop five capability dimensions that depict
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different facets of hierarchical structure understanding. Through
extensive evaluation of 20 LLMs from 10 model families, we reveal
key insights into their capabilities and limitations: 1) existing LLMs
show proficiency in basic hierarchical reasoning tasks; 2) they still
struggle with more complex structures and implicit hierarchical
representations, especially in structural modification and textual
reasoning. Based on these findings, we create a small yet well-
designed instruction dataset, which enhances LLMs’ performance
on HiBench by an average of 88.84% (Llama-3.1-8B) and 31.38%
(Qwen2.5-7B) across all tasks. The HiBench dataset and toolkit
are available at https://github.com/jzzzzh/HiBench to encourage
evaluation.
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1 Introduction

Recently, Large Language Models (LLMs) have shown remarkable
performance across a variety of tasks, such as conversational Ar-
tificial Intelligence (AI) [4, 7, 40], text summarization [27, 68], lan-
guage translation [23, 29, 36], programming assistance [35, 45].
These advancements have driven substantial progress in practical
applications, including healthcare [24, 42, 50], finance [60, 66], and
software development [33, 39, 59]. Notably, the emergent cognitive
capabilities in LLMs have been observed to increasingly mirror
certain aspects of human intelligence, which suggests potential
parallels between LLMs’ behavior and human cognitive processes,
arousing discussions about possible pathways to Artificial General
Intelligence (AGI) [19, 71]. One fundamental principle of human
cognition is hierarchical reasoning, which is essential for memory
organization, problem-solving, and decision-making [20, 43, 49],
allowing humans to understand and organize complex relationships
with structured knowledge effectively. Consequently, evaluating
whether and to what extent LLMs exhibit hierarchical reasoning
is crucial for further investigating the alignment between their
capabilities and human cognition.

While numerous benchmarks have been developed to assess var-
ious cognitive capabilities of LLMs, such as memory retrieval [28],
commonsense understanding [30, 47], and structure reasoning [44,
72], there is a significant gap when it comes to hierarchical reason-
ing evaluation. Existing structure reasoning benchmarks for LLMs
primarily focus on tasks involving horizontal or coordinate struc-
tures, such as graphs [12, 13, 55] or tables [52, 57], while overlooking
the critical hierarchical nature of cognitive reasoning, where in-
formation is processed across different levels of abstraction. This
absence hinders a comprehensive understanding of LLMs’ actual
cognitive capabilities. To fill the essential gap in current evalua-
tion systems for LLMs, we propose HiBench, the first benchmark
specifically designed to evaluate LLMs” hierarchical reasoning capa-
bilities, providing a systematic framework for assessing how LLMs
organize, process, and reason with multi-level information across
multiple capability dimensions and scenarios.

As diverse task demands drive the evolution of cognitive compe-
tencies, HiBench introduces 30 carefully crafted tasks comprising
39,519 queries to evaluate the hierarchical reasoning capabilities
of LLMs. These tasks are systematically organized into six distinct
scenarios, covering both fundamental and practical aspects of hier-
archical reasoning. Specifically, the fundamental aspect comprises
three scenarios: Binary Tree, Multiple Tree, and JSON, accounting
for 22 tasks. These scenarios are designed to assess LLMs’ behavior
in processing and manipulating abstract hierarchical structures,
which reflect basic yet essential hierarchical reasoning capabilities.
The practical aspect features three real-world scenarios: Code, For-
mula, and Paper, consisting of eight specific tasks. These scenarios
incorporate hierarchical reasoning into complex application con-
texts, enabling the evaluation of how well LLMs handle hierarchical
information, providing a robust measure of advanced hierarchical
reasoning proficiency.

To provide a comprehensive and thorough assessment of LLMs’
hierarchical reasoning capabilities, HiBench establishes a multi-
dimensional evaluation system comprising five essential dimen-
sions: Relationship Awareness, Structural Understanding, Structural
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(b) Overall Performance of LLM Families on HiBench.

Figure 1: Performance Distribution of LLM Model Families
on HiBench.

Manipulation, Analytical Reasoning, and Textual Reasoning. These
dimensions capture distinct yet progressive aspects of hierarchical
reasoning, from recognizing and navigating structures to perform-
ing complex reasoning tasks. Furthermore, HiBench incorporates
comparative experiments across varying structure complexity, con-
textual learning paradigms, and structure representations, enabling
the investigation of critical factors affecting LLMs’ performance
across the five evaluation dimensions. As summarized in Figure 1,
extensive experimental results demonstrate that current popular
LLMs from various families possess preliminary hierarchical reason-
ing capabilities with general performance over 40.0% accuracy. Our
findings reveal several key insights: 1) LLMs generally demonstrate
more substantial capabilities in relationship awareness, structural
understanding, and analytical reasoning than structural manipula-
tion and textual reasoning; 2) As the complexity of the hierarchical
structure increases, whether in depth or breadth, the challenge
for LLMs also intensifies; 3) Structure representation with explicit
hierarchical information enhances LLMs’ reasoning capabilities; 4)
LLMs perform more effectively when contextual semantics align
with real-world hierarchical relationships; 5) Contextual learning
strategies can enhance LLMs’ performance, while the benefits of
simple Chain-of-Thought (CoT) prompting are limited.
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Figure 2: Comprehensive Breakdown of Hierarchical Reasoning Scenarios and Tasks in HiBench.

As LLMs still show room for improvement in hierarchical struc-
ture reasoning, we construct a carefully designed instruction dataset
consisting of 14,623 question—answer pairs across six scenarios,
guided by insights from our findings. The dataset targets LLMs’
weaknesses in hierarchical reasoning, focusing on complex struc-
tures, implicit representations, and counterfactual configurations.
After instruction finetuning, two small-scale LLMs, Llama-3.1-8B [18]
and Qwen2.5-7B [63], achieved higher performance on HiBench
by 88.84% (Llama-3.1-8B) and 31.38% (Qwen2.5-7B) across all tasks,
compared to their vanilla versions. They even exceed large-scale
models like Llama-3.1-405B by up to 7.31% (Llama-3.1-8B) and
18.06% (Qwen2.5-7B), and the GPT-4 [2] by up to 6.53% (Qwen2.5-
7B) and 0.2% (Llama-3.1-8B), which indicates that a small-scale
high-quality dataset can inspire LLMs’ hierarchical reasoning ca-
pabilities. However, the performance on some tasks remains far
less than average, making it an open question to enhance LLMs’
hierarchical reasoning capabilities.

Our contributions are summarized as follows:

» We propose HiBench, the first benchmark specifically de-
signed to comprehensively evaluate the hierarchical reason-
ing capabilities of LLMs.

» We conduct extensive experiments on 20 LLMs across 10

well-known families, uncovering both the strengths and lim-

itations of LLMs in hierarchical reasoning and providing

new insights for further advancements.

By constructing an instruction dataset that targets LLMs’

weaknesses in hierarchical reasoning and finetuning small-

scale LLMs, we enhance their effectiveness in hierarchical
reasoning tasks, outperforming state-of-the-art GPT-4 by

6.53% at most.

2 Related Works

2.1 LLMs on Structure Reasoning

With the growing popularity of LLMs, researchers have begun to
deeply explore the combination of LLMs and structured data, such
as graphs. Early studies primarily focused on empirical performance
evaluations. For instance, GraphBERT [69], GraphTransformer [67],
and GraphT5 [31] investigated whether LLMs can comprehend
structured graph data, laying a solid foundation for applying LLMs
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to graph-related tasks. In addition, Luo et al. [38] systematically
evaluated LLMs’ graph reasoning capabilities through GraphlIn-
struct, while Dai et al. [13] highlighted the substantial gap in LLMs’
understanding of graph structures. However, most of these studies
have been limited to horizontal graph reasoning tasks, ignoring the
crucial aspect of hierarchical structure reasoning. This limitation
motivates us to investigate the capabilities of LLMs in handling
hierarchical architectures, which are more typically required in
real-world applications.

2.2 Implicit Hierarchical Thinking in LLMs

The investigation of implicit hierarchical thinking in LLMs has
emerged as a prominent research focus in recent years. Some stud-
ies have shown that LLMs do not always rely on explicit, step-by-
step reasoning but may instead perform implicit reasoning through
their internal hierarchical structures. For example, Deng et al. [15]
proposed a method for transitioning from explicit CoT reasoning
to implicit CoT via knowledge distillation, enhancing LLMs’ rea-
soning capabilities. In the context of task planning, LLMs have
demonstrated the capability to tackle complex problems through
hierarchical decomposition. Yao et al. [64], introduced the Tree of
Thoughts framework to optimize LLMs’ problem-solving capability
through hierarchical structures. Similarly, He et al. [25] proposed a
dual-process framework for dialogue planning that mimics human
hierarchical thinking in planning tasks. While significant progress
has been made in understanding the implicit hierarchical thinking
of LLMs across various domains, a key challenge remains: how to
efficiently harness these capabilities to enhance their performance
on complex, real-world tasks.

3 Task Taxonomy

This section introduces the task taxonomy of HiBench, which en-
compasses a wide range of tasks designed to assess hierarchical
reasoning capabilities of LLMs, as shown in Figure 2. Recognizing
that different task scenarios impose varying demands on hierarchi-
cal reasoning, the taxonomy classifies these tasks based on their
structural complexity and cognitive requirements. By systemati-
cally organizing both fundamental and practical tasks, this taxon-
omy underscores the pivotal role of hierarchical reasoning in LLM
performance. Furthermore, it facilitates a more fine-grained and
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Figure 3: Overview of the HiBench Framework, Encompassing Pipelines from Hierarchical Dataset Generator to Evaluator.

context-specific evaluation of LLM capabilities, providing action-
able insights for future model development and refinement.

3.1 Fundamental Aspect

Fundamental tasks are designed to assess LLMs’ capabilities to
understand and manipulate hierarchical structure data, such as
tree-based data and semi-structured formats like JSON. These tasks
evaluate whether LLMs can effectively perform hierarchical rea-
soning across a range of hierarchical representations.

Scenario 1: Binary Tree. The binary tree is a fundamental data
structure widely used in computer science. Using a generalized
random structure generator, we construct binary trees with varying
depths to introduce different levels of complexity, then design six
hierarchical tasks upon them, including Balance, Prefix Traversal,
Infix Traversal, Postfix Traversal, Traversal Order Verification and
Mirror Tree, to evaluate LLMs’ hierarchical understanding of binary
tree structures.

Scenario 2: Multiple Trees. Multiple trees are widely utilized
in diverse domains such as database indexing, file systems, and
network architectures, where they excel in representing complex
hierarchical arrangements beyond the capabilities of binary trees.
To comprehensively assess LLMs’ reasoning capabilities in these
more intricate settings, we employ a randomized tree generator
to construct multiple trees with varying levels of complexity in
both breadth and depth. Based on these structures, we develop nine
hierarchical tasks: Add Node, All Ancestor, All Children, Common
Ancestor, Isomorphic, Remove Node, Node Depth, Leaf and Root.

Scenario 3: JSON. JSON is a semi-structured data interchange
format capable of representing hierarchical structures through
nested objects and arrays. As a standardized and widely supported
format, it is well-suited for evaluating structured data understand-
ing. To this end, we randomly generate JSON files with different
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breadth and depth and design the following seven tasks: Child
Count, Node Depth, Level Count, Node Attribute, Level Nodes, Path
Finding, and Nearest Ancestor. These tasks examine LLMs’ capabil-
ity to parse JSON data, comprehend hierarchical relationships, and
analyze paths across multiple dimensions.

3.2 Practical Aspect

In contrast to the fundamental aspect, the practical aspect empha-
sizes real-world applications that vary in information format and
structural complexity, such as formulas, code, and academic pa-
pers. These tasks assess the versatility and capability of LLMs to
apply hierarchical reasoning in tackling noisy, diverse, and complex
real-world challenges.

Scenario 4: Formula. Mathematical formulas inherently ex-
hibit certain hierarchical information in prefix, infix, and postfix
notations. Therefore, we randomly generate a series of formulas
with varying levels of complexity, controlled by formula length,
numerical magnitude, and symbolic complexity, and construct three
types of formula comprehension tasks: Conversion, Calculation and
Equivalence, to evaluate LLMs’ hierarchical understanding of math-
ematical expressions.

Scenario 5: Code. Given the hierarchical nature of code struc-
ture and logic, we collect diverse C++ and Python code samples
from Github! and LeetCode? platforms, and construct two types
of tasks, Space Complexity and Time Complexity, aiming at evalu-
ating the capability of LLMs to reason about code efficiency and
structural complexity.

Scenario 6: Paper. Since academic papers are hierarchically
structured textual documents, we curate a subset of papers from
the QASPER [14] benchmark to evaluate LLMs’ ability to reason

Thttps://github.com
*https://leetcode.com
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about hierarchical textual information through three task types:
Contextual QA, Disordered Section, and Outline Extraction.

4 The HiBench

In this section, we introduce the overall architecture of HiBench, a
comprehensive and systematic benchmark developed to assess the
hierarchical reasoning capabilities of LLMs. It facilitates user adop-
tion and practical use by offering a well-established and streamlined
workflow. The architecture comprises two main components: the
Hierarchical Dataset Constructor and the Evaluator. The Hierarchical
Dataset Constructor systematically generates benchmark samples
with varying complexity, while the Evaluator quantifies model per-
formance across five refined capability dimensions. An overview
of the HiBench architecture is presented in Figure 3.

4.1 Hierarchical Dataset Generator

The data generation process of HiBench consists of three main
stages: Structure Generator, Query-Answer Generator, and Prompting
Producer. Building upon the task taxonomy mentioned in Section 3,
the complexity of specific tasks within each scenario varies due
to the intricacy of their hierarchical structures. To ensure a thor-
ough evaluation, Structure Generator constructs various hierarchical
structures tailored to each scenario for subsequent processes. Next,
Query-Answer Generator leverages these pre-constructed structures
to produce corresponding queries for sub-tasks in different sce-
narios. Finally, Prompting Producer transforms these queries into
well-formatted prompts, adapting them for LLM input while ensur-
ing consistency across evaluations.

Structure Generator. Given that the task taxonomy of HiBench
spans diverse application scenarios, each with specialized require-
ments and varying levels of complexity, tailoring structure genera-
tors to each scenario is necessary. For the four scenarios, Binary
Tree, Multiple Tree, JSON, and Formula, dedicated structure gener-
ators autonomously and efficiently construct large-scale, diverse
instances, providing rich and challenging hierarchical structures
for comprehensive evaluation. Specifically, the tree generator con-
structs hierarchical tree data by varying key parameters such as
out-degree, depth, and node number. The JSON generator creates
data by adjusting two key dimensions: width and depth, while the
formula generator adjusts formula length, numerical complexity,
and symbolic complexity to introduce varying levels of difficulty.
In contrast, for the remaining two scenarios, Code and Paper, their
structure generators rely on collecting hierarchically structured
data from existing real-world sources. Specifically, the code genera-
tor gathers C++ and Python samples from GitHub and LeetCode,
while the paper generator reorganizes academic texts sourced from
the QASPER dataset. These data capture the inherent hierarchical
structures of code and academic writing, ensuring both diversity
and real-world representativeness.

Query-Answer Generator. Since each task scenario consists
of multiple sub-tasks, we generate corresponding query-answer
pairs based on the hierarchical structures constructed in the previ-
ous stage. A variety of algorithms are employed to tailor queries
to specific sub-tasks. For instance, the prefix traversal algorithm
generates query-answer pairs for the corresponding sub-task using
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Table 1: Basic Statistics of HiBench.

Scenarios Tasks Sub-Tasks Queries Avg. Length
Binary Tree 6 216 4,968 2,824.3
Multiple Tree 9 162 9,558 915.0
JSON 7 300 2,586 1,349.8
Formula 3 1,458 18,954 516.8
Code 2 12 1,200 1,296.9
Paper 3 9 2,253 26,759.2
Total (HiBench) 30 2,157 39,519 1,725.9

the binary tree structure. In scenarios such as academic papers,
where fixed answers are not always available, we rely on manual
annotations to produce accurate query-answer pairs.

Prompting Producer. To support comprehensive evaluation
across diverse reasoning types and task formats, we incorporate
well-known prompt engineering techniques like In-context Learn-
ing (ICL) [16] and CoT [70] into the query generation. This design
allows us to assess the impact of prompt engineering on LLM perfor-
mance. Additionally, we provide explicit output format instructions
to ensure that responses adhere to predefined structural and stylistic
constraints, thereby facilitating consistent and reliable evaluation.

Table 1 presents a statistical overview of HiBench, comprising 30
tasks and 39,519 queries across six hierarchical scenarios. It serves
as a comprehensive benchmark for evaluating the hierarchical rea-
soning capabilities of LLMs, featuring diverse query lengths and a
broad spectrum of sub-tasks.

4.2 Evaluator

In human cognition progress, hierarchical reasoning is represented
from understanding local relationships to grasping global struc-
tures, performing structural manipulations, and reasoning within
increasingly complex information contexts, reflecting a growing
cognitive capability. Building upon this, we define five dimensions
to evaluate LLMs’ hierarchical reasoning capabilities, each mirror-
ing a stage of human hierarchical reasoning:

Local Relationship Awareness assesses the capability to rec-
ognize immediate connections, such as parent-child relation-
ships in trees or code dependencies.

Global Structural Understanding involves grasping the overall
organization and coherence of hierarchical structures.
Structural Manipulation evaluates the capability to modify
structures, such as code refactoring or tree transformations.
Analytical Reasoning measures the capability to derive in-
sights through logical inference and quantitative analysis.
Textual Reasoning examines the ability to comprehend hier-
archical structures embedded within complex, context-rich
textual information.

Based on the characteristics of each task, we assign it to one of the
five evaluation dimensions, as depicted in Figure 2. This categoriza-
tion reflects the underlying cognitive and computational demands
of hierarchical structures, offering a unified schema for systemati-
cally assessing the hierarchical reasoning abilities of LLMs.
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Table 2: HiBench Leaderboard: Categorizing Models by Open-Source Status and Family.*

(@ Fundamental Aspect d Practical Aspect
Model Family Model Name " Fundamental Aspec U Practical Aspec Average Rank
£2 Binary %‘f‘; Multiple @ JSON Code Formula @f Paper
Closed-Source
OpenAl GPT-3.5 [46] 39.19 54.22 53.49 66.50 54.54 - 53.59 6
P GPT-4 [2] 56.29 73.64 63.59 70.75 54.37 38.35 59.50 2
Open-Source
01-AI Yi-1.5-9B [65] 26.18 47.67 54.23 66.75 42.42 10.27 41.25 9
Qwen2.5-0.5B [63] 1.99 15.03 15.31 2.50 8.83 3.98 7.94 19
Qwen2.5-1.5B [63] 19.43 43.30 35.47 56.75 21.17 25.54 32.02 17
Qwen Qwen2.5-3B [63] 24.32 48.95 39.71 60.25 39.78 32.38 40.52 10
Qwen2.5-7B [63] 33.11 59.01 48.58 69.25 41.27 42.08 49.93 7
QwQ-32B [53] 4291 74.12 73.80 13.75 16.82 17.22 39.77 12
Qwen2.5-72B [63] 45.61 63.08 70.50 69.25 51.75 39.72 56.65 3
Baichuan Inc. Baichuan-7B [61] 2.62 1.75 4.33 0.25 0.93 0.00 1.65 20
DeepSeek DeepSeek-V3 [34] 70.23 72.59 77.65 72.50 57.40 42.99 65.56 1
Llama-3.2-1B [18] 9.57 20.45 23.18 44.25 17.02 13.30 21.30 18
Llama-3.2-3B [18] 31.79 34.70 29.31 60.50 23.20 28.07 34.59 15
Meta Llama-3.1-8B [18] 14.74 28.76 49.29 61.75 26.35 16.23 32.85 16
Llama-3.1-70B [18] 54.73 65.04 63.03 68.75 42.14 43.71 56.24 4
Llama-3.1-405B [18] 64.49 59.95 55.61 53.37 63.45 16.46 55.53 5
Microsoft Phi-3.5-mini-3.8B [1] 27.36 38.24 57.52 65.25 41.76 11.51 40.27 11
Mistral Mistral-7B [26] 26.14 31.00 49.19 58.75 40.08 27.10 38.71 13
SHAILab InternLM2.5-7B [6] 34.28 39.02 54.62 65.75 23.27 6.24 37.20 14
THUDM GLM-4-9B [22] 36.72 46.26 48.60 66.50 32.11 37.60 44.63 8
Average Performance 33.08 44.61 49.94 55.53 34.43 23.83 40.48 -

* The best results for each task are marked in bold, and the second-best results are marked with underline.

** Queries exceed the maximum context token limitation of GPT-3.5.

5 Experiments

In this section, we present the experimental results evaluating the
performance of LLMs on hierarchical reasoning using our HiBench.

5.1 Experimental Setup

Models. In the HiBench, we evaluate 20 LLMs from 10 model
families. These LLMs are categorized into four main groups, includ-
ing the GPT family, the Llama family, the Qwen family, and Other
open-source models.

+ GPT Family: The GPT family [2, 46] includes a series of
advanced LLMs developed by OpenAl and known for their
superior natural language processing capabilities. In our
HiBench, we choose GPT-3.5 and GPT-4 for evaluation to
fully demonstrate their hierarchical reasoning performance.

« Llama Family: The Llama family [18] is a collection of open-
source LLMs from Meta, noted for their excellent multilin-
gual support, extended context processing capabilities, and
optimized architectural design. We employ five Llama mod-
els in HiBench, including Llama-3.2-1B, Llama-3.2-3B, Llama-
3.1-8B, Llama-3.1-70B, and Llama-3.1-405B.
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+ Qwen Family: The Qwen family [63] comprises a set of open-
source LLMs developed by the Alibaba DAMO Academy,
known for their strong instruction-following capabilities, ex-
tended long-context handling, and improved understanding
of structured data. In our setting, we select the following
models to benchmark their hierarchical reasoning behav-
iors: Qwen2.5-0.5B, Qwen2.5-1.5B, Qwen2.5-3B, Qwen2.5-7B,
QwQ-32B, and Qwen2.5-72B.

Other Open-source LLMs: Our benchmark also covers repre-
sentative LLMs from seven other well-known model families,
including ChatGLM [22], Phi [1], InternLM [6], Yi [65], Bai-
chuan [61], Mistral [26], and DeepSeek [34]. These models
demonstrate their strengths in multi-lingual comprehension,
complex reasoning, and code generation tasks. By introduc-
ing these diverse models, our benchmark provides a more
comprehensive picture of current LLMs’ capabilities in hier-
archical reasoning.

Hyperparameters. In the model setup, we make specific config-
urations for key parameters to ensure the model runs as intended.
Specifically, we set the temperature to 0.0 to ensure the stability
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and consistency of the generated content. We also fix the seed of
the local model to 0 to facilitate the reproduction and validation of
the results. In addition, we set the new token length to 2048, which
allows the model to generate longer textual content to support
complex tasks such as writing lengthy articles, generating detailed
reports, or engaging in in-depth reasoning.

Evaluation. In experiments, we first generate a complete query
by extracting a hierarchical structure from the benchmark dataset
and filling it into a specific query template. Then, we prompt an
LLM with the query to obtain the model’s response, which is subse-
quently formatted and compared with the correct answer. Accuracy

is used as the primary metric to assess LLM performance, defined
#Correct

as Accuracy = ot "

5.2 LLMs’ Performance on HiBench

Overview. Table 2 presents the performance of the 20 most pop-
ular and powerful LLMs across tasks in our HiBench, categorized
by model families and scenarios. Current LLMs achieve an average
score of 40.48% on our HiBench, demonstrating the general level
of hierarchical reasoning performance. Specifically, DeepSeek-V3
stands out with the highest performance, achieving a mean score
of 65.56%. It surpasses the benchmark average by 62.0% and out-
performs the most powerful closed-source LLM, GPT-4, by 10.2%.
Although many LLMs demonstrate basic hierarchical reasoning
capabilities in managing Multiple Tree, JSON, and Code scenar-
ios, these LLMs still face challenges in more complex scenarios,
especially in the practical aspects. These findings highlight the im-
portance of continued model refinement to enhance LLMs’ behavior
on more advanced and nuanced hierarchical tasks.

Scenario Performance. Figure 4 presents the performance of
LLMs across various hierarchical reasoning tasks, categorized by
different scenarios such as Multiple Tree, JSON, Code, Formula, Pa-
per, and Binary Tree. The results show that LLMs perform well on
tasks such as Root Identification, Level Counting, and Node Attribute
Recognition, with performance values reaching up to 70%. These
tasks, which require minimal reasoning complexity and exhibit
clear structural patterns, allow LLMs to achieve high accuracy. In
contrast, tasks like Path Finding, Mirror Tree, and Calculation are
generally below 30% and pose significant challenges due to their re-
quirements for multi-step reasoning, structural transformations, or
numerical computations. Overall, the average performance across
all tasks is 41.2%.

Capability Dimensions. As illustrated in Figure 1 (a), LLMs
perform well in local relationship awareness, global structural un-
derstanding, and analytical reasoning but struggle with structural
modifications and textual reasoning. DeepSeek-V3 leads overall,
scoring 75.96% in local relationship awareness, 66.77% in global
structural understanding, and 64.95% in analytical reasoning, yet
still lags in structural modifications and textual reasoning. Simi-
larly, GPT-4 and Qwen2.5-72B maintain strong local relationship
awareness and analytical reasoning scores but steeply decline in
structural modifications. Smaller models, such as Yi-1.5-9B and Phi-
3.5-mini-3.8B, exhibit poor performance in structural manipulation
and textual reasoning, while Baichuan-7B fails across all evaluation
dimensions. The performance disparity highlights that, although
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LLMs are proficient at recognizing and analyzing hierarchical struc-
tures, they struggle with structural modification and reasoning over
hierarchical text, indicating significant room for improvement in
these areas.

Structure Complexity Impact. Figure 5 presents the perfor-
mance of LLMs across varying structure complexity levels. The
results demonstrate that LLMs perform significantly better on sim-
pler structures, with accuracy peaking for the easy structures in
all scenarios. In contrast, as structure complexity increases, perfor-
mance declines noticeably, with the hard structures yielding only
19.6% accuracy in the Binary Tree scenario and 37.0% in the JSON
scenario. These findings suggest that while LLMs can effectively
handle tasks with simpler structures and clear patterns, they strug-
gle with more complex hierarchical structures, highlighting the
need for further model development to address more challenging
hierarchical structures.

5.3 Insightful Findings

5.3.1 Structure Representation Affect LLM Reasoning. As
the mode of structural representation can affect LLMs’ ability to
capture hierarchical information, we explore the impact of differ-
ent representation formats on hierarchical reasoning performance.
Specifically, we compare two representation modes: edge represen-
tation and text tree representation, over binary and multiple tree
tasks. The edge representation encodes the hierarchical structure
through a list of directed edges, while the text tree representation
uses structure symbols to visually reflect the hierarchical organiza-
tion. As shown in Figure 6 (a), LLMs utilizing text tree representa-
tion outperform those using edge representations on both binary
tree and multi-tree tasks, achieving performance scores of 39.6%
and 38.4%, respectively. These results suggest that input represen-
tation plays a significant role in shaping the hierarchical reasoning
capabilities of LLMs.

The text tree representation conveys global hierarchical infor-
mation. In contrast, the edge representation emphasizes only local
connections, which may hinder its effectiveness in capturing the
overall organizational pattern. It suggests that the text tree rep-
resentation is better suited for tasks requiring a comprehensive
understanding of the hierarchy.

5.3.2 Expression of Explicit Structures Improves LLM Com-
prehension. In practical aspects, such as Code and Paper scenarios,
hierarchical structures may present with either implicit or explicit
structural constraints. In the Code scenario, C++ utilizes explicit
structural constraints where double braces mark each block, while
Python relies on indentation to represent hierarchical relationships
implicitly. In the Paper scenario, papers formatted in an XML-like
style [8] offer clear structural indicators, whereas those based on
plain text lack explicit hierarchical cues. Figure 6 (b) and (c) in-
vestigate how these kinds of structural constraints impact LLMs’
hierarchical reasoning capabilities. The results demonstrate that
inputs with explicit structural constraints consistently outperform
those with implicit or no structure. Specifically, C++ outperforms
Python by 4.7% in the Code scenario, while structured inputs sur-
pass unstructured ones by 1.1% in the Paper scenario. The superior
performance could be attributed to the clarity and consistency of
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Figure 5: Impact of Structural Complexity on LLM Hierarchi-
cal Reasoning Capabilities.

explicit structural formats, such as C++’s strict syntactic rules and
XML’s hierarchical markers, which define clear boundaries and
reduce ambiguity, allowing LLMs to capture the hierarchical in-
formation more effectively. These findings highlight the critical
role of explicit hierarchical structural constraints in enhancing the
hierarchical reasoning behaviors of LLMs in practical aspects.
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Figure 6: Impact of Input Mode on LLM Hierarchical Reason-
ing Capabilities.

5.3.3 Semantics Enhances LLM Hierarchical Structure Rea-
soning. To investigate whether LLMs have captured essential hi-
erarchical reasoning capability from real-world corpora during pre-
training, we compare their performance on real-world hierarchical
structures and nonsense structures in the JSON scenario. The orig-
inal JSON scenario is based on real-world hierarchical structures
containing semantically meaningful values. We construct nonsense
structures involving hierarchies with randomly shuffled labels or
meaningless values for comparison. As shown in Figure 6 (d), LLMs
achieve a significantly higher accuracy of 42.4% with real-world
semantic structures compared to 37.7% with nonsense structures.
This improvement suggests that LLMs have likely internalized basic
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and QwQ-32B on Binary Tree and Multiple Tree scenarios. As
shown in Table 3, CoT slightly improves Qwen2.5-7B’s accuracy
in the Multiple Tree task by 3.33% but has minimal degradation on
the Binary Tree task. However, for QwQ-32B, CoT leads to a 0.9%
accuracy decrease in Binary Tree and a substantial 31.26% drop in
Multiple Tree performance. These results indicate that CoT does
not consistently enhance hierarchical reasoning and may introduce
unnecessary steps that complicate intermediate reasoning.

Table 3: Performance Comparison of Models Using CoT Rea-
soning Versus Standard One.

Binary Tree Multiple Tree
Qwen2.5-7B w/ CoT 33.11 54.86
Qwen2.5-7B w/o CoT 33.06 58.19
Acor -0.05 | 3331
QwQ-32B w/ CoT 42.91 74.12
QwQ-32B w/0 CoT 42.01 42.86
Acor -0.9 | -31.26 |

5.4 DPotential Improvement

Given the nascent state of LLMs’ behaviors in hierarchical rea-
soning, we conduct a series of experiments, including ICL and
instruction finetuning, to assess the effectiveness of these methods
in improving their hierarchical reasoning performance.

Figure 7 demonstrates the impact of ICL on LLMs over our Hi-
Bench, where zero-shot learning results in the lowest performance,
one-shot learning shows moderate improvement, and few-shot
learning significantly enhances LLMs’ hierarchical reasoning capa-
bilities. This trend demonstrates that LLMs benefit from additional
context provided by ICL, with more examples generally leading
to substantially better performance across hierarchical reasoning



HiBench: Benchmarking LLMs Capability on Hierarchical Structure Reasoning

Table 4: Instruction Finetuning Performance on HiBench.

Qwen2.5-7B Llama-3.1-8B
Aspects
Vanilla Finetuned Vanilla Finetuned
Fundamental  42.32 65.74 25.89 63.59
Practical 54.17 61.05 37.20 55.60
Average 48.25 63.39 31.55 59.59
[ ZeroShot [ OneShot [ FewShot
3 60 52.7 51.0 3T
°; 43,474,496 48.5 48.7
g 407 30.1 . 314 | 319 332 36.2 |
é 20 A
£, | 8 , d |
Binary Tree Multiple Tree JSON Formula Code

Figure 7: Impact of ICL on Hierarchical Reasoning.

tasks. However, in certain scenarios, such as Binary Tree, JSON, and
Code, one-shot learning performs poorly compared to zero-shot
learning. LLMs may develop an unintended inductive bias when
only a single example is provided, leading to incorrect general-
ization. This effect is particularly pronounced when the example
contains high-frequency patterns or structural repetitions, causing
the model to overfit spurious correlations rather than accurately
grasping the hierarchical relationships. It underscores the impor-
tance of instance diversity in few-shot settings to mitigate biases
and enhance LLMs’ hierarchical reasoning capabilities.

To further enhance the hierarchical reasoning performance of
LLMs, we conduct instruction finetuning on Llama-3.1-8B and
Qwen2.5-7B models using a well-designed instruction dataset with
14,623 examples targeted to hierarchical reasoning. The dataset
emphasizes scenarios involving complex hierarchical structures,
implicit structural representations, and counterfactual hierarchi-
cal configurations, aiming to strengthen LLMs’ reasoning in areas
where they currently underperform. As shown in Table 4, finetun-
ing leads to significant performance gains across both fundamental
and practical aspects. Specifically, Llama-3.1-8B improves from
31.55% to 59.59% on average, and Qwen2.5-7B rises from 48.25% to
63.39%. These results highlight the importance of finetuning LLMs
to enhance hierarchical reasoning, particularly for complex tasks.

6 Conclusion

In this paper, we propose HiBench, the first benchmark dedicated
explicitly to evaluating the hierarchical reasoning capabilities of
LLMs. HiBench spans two key aspects, six scenarios, and 30 tasks,
comprising 39,159 queries. Experimental results demonstrate that
while existing LLMs show proficiency in basic hierarchical reason-
ing tasks, they still struggle with more complex hierarchical chal-
lenges. In addition to improving LLM performance through ICL, we
demonstrate that finetuning small-scale LLMs on our constructed
high-quality instruction dataset leads to significant improvements
of up to 6.53% over the leading closed-source LLM GPT-4. These

5513

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

findings highlight the potential for further advancements in en-
hancing LLMs’ hierarchical reasoning capabilities.
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A Dataset Statistics

Binary Tree Scenario As shown in Table 5, HiBench categorizes
the Binary Tree Scenario into three difficulty levels based on the
number of tree nodes and the depth of the tree. The figures listed
for each level indicate the dataset size, the number of nodes, and
the number of tree layers.

Table 5: Structure Statistics of Binary Tree Scenario.

Complexity #Structure  #Node  #Layer #Degree
Easy 48 2~15 2~4 2
Medium 54 16~255 5~7 2
Hard 36 256~511 8~9 2

Multiple Tree Scenario In the Multiple Tree scenario, HiBench
designs six difficulty levels of varying sizes, differing in the number
of nodes, node out-degree, and tree depth. As shown in Table 6,
each difficulty level is characterized by four values: the dataset size,
the total number of tree nodes, the number of tree layers, and the
average out-degree of the nodes, respectively.

JSON Scenario The JSON dataset comprises seven types of
questions derived from two categories of datasets: normal and
nonsense. The normal part contains JSON structures with realistic
and meaningful semantics, while the nonsense part uses randomly
generated content. Details about the JSON dataset are illustrated in
Table 7.
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Table 6: Structure Statistics of Multiple Tree Scenario.

Complexity #Structure #Node #Layer #Degree
Easy 33 2~13 2~3 2~3
Medium-1 36 2~13 2~3 3~4
Medium-2 36 3~34 3~4 2~3
Hard-1 36 4~32 2~3 5~6
Hard-2 36 13~212 5~6 2~3

Table 7: Statistics of JSON Datasets.

Complexity #Depth #Width

Small 4 2
Medium-1 5 2
Medium-2 4 4

Large-1 6 2
Large-2 4 6

Code Scenario The dataset consists of 100 Python and 100 C++
scripts, each containing two questions about time and space com-
plexity. Table 8 demonstrates the details of the Code dataset.

Table 8: Statistics of Code Understanding Datasets.

Programming Language Python C++

Script Content LeetCode LeetCode
Script Length 11 - 86 lines 6 - 37 lines
No. of scripts 100 100
Question no. of Type 1 100 100
Question no. of Type 2 100 100

Formula Scenario As shown in Table 9, we constructed a sys-
tem of formulas of different complexities in the Formula task. These
expressions are systematically assigned to Conversion, Calcula-
tion, and Equivalence. Specifically, the Conversion task contains
5,022 queries, the Calculation task contains 2,511 queries, and the
Equivalence task contains 7,533 queries.

Table 9: Multidimensional Formula Complexity System.

Complexity Easy Medium Hard
Type int - float
Range 1-10 -50-50 -100- 100

Symbolic  +-*/ +-%/() +-*/()"
Length 3 6 9

Paper Scenario This dataset focuses on academic paper under-
standing, encompassing three sub-tasks: Outline Extraction, Dis-
ordered Section Identification, and Contextual Question Answering.
It aims to evaluate the capability of models to comprehend the
structure and content of scholarly articles.
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