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A B S T R A C T

Currently, most natural language processing tasks use word embeddings as the representation of words.
However, when encountering out-of-vocabulary (OOV) words, the performance of downstream models that use
word embeddings as input is often quite limited. To solve this problem, the latest methods mainly infer the
meaning of OOV words based on two types of information sources: the morphological structure of OOV words
and the contexts in which they appear. However, the low frequency of OOV words themselves usually makes
them difficult to learn in pre-training tasks by general word embedding models. In addition, this characteristic
of OOV word embedding learning also brings the problem of context scarcity. Therefore, we introduce the
concept of ‘‘similar contexts’’ based on the classical ‘‘distributed hypothesis’’ in linguistics, by borrowing
from the human reading comprehension mechanisms to make up for the deficiency of insufficient contexts
in previous OOV word embedding learning work. The experimental results show that our model achieved the
highest relative scores in both intrinsic and extrinsic evaluation tasks, which demonstrates the positive effect
of the ‘‘similar contexts’’ introduced in our model on OOV word embedding learning.
. Introduction

Most models for natural language processing (NLP) tasks represent
ach word in a sentence as a fixed-length vector, which is named word
mbedding (Mikolov et al., 2013). However, when these models are
pplied to downstream tasks, they often encounter some words that
ave not appeared in the vocabulary, which are referred to as out-
f-vocabulary (OOV) words. Since these words have not been seen
uring training, the model generally cannot learn the embeddings of
uch words correctly, resulting in the performance of the model in
ownstream tasks not being very ideal (Adams et al., 2017). Therefore,
ow to tackle OOV words has become one of the largest challenges that
eed to be overcome in NLP tasks.

For OOV word embedding learning, one possible solution is to
ssign a unique random vector to each OOV word or to use a unified
andom vector to represent all OOV words. However, this simple
trategy has a very significant drawback: although it enables OOV
ords to have corresponding vectors as word embeddings, it almost
oes not capture complex semantic relationships and provide essential
nformation about OOV words for downstream tasks. This does not
ecessarily lead to better performance in the end, and it may even have
he opposite effect in some cases.
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To solve this problem, most recent work has proposed methods
based on the morphological structure (form) and contexts in which
OOV words appear to learn embedding vectors for OOV words and
alleviate the data sparsity dilemma in OOV word embedding learning.
The typical idea of methods based on OOV word morphology is to fully
utilize finer grained sub-word information to provide an initialization
embedding for OOV words with limited co-occurrence information. One
of the most prominent works in this direction is FastText (Bojanowski
et al., 2017), which predicts OOV words by introducing character-level
𝑛-gram subword information. In FastText, the embedding of an OOV
word can be obtained by adding up 𝑛-gram vectors. However, such
morphology-based models often require pre-training from scratch and
occupy a large amount of computing resources and time. Therefore,
MIMICK (Pinter et al., 2017), BoS (Zhao et al., 2018), and KVQ-
FH (Sasaki et al., 2019) have been proposed, which only use the
morphological structure of words and generate vectors for unseen
words by learning from pre-trained embeddings.

The main drawback of morphology-based OOV word embedding
methods is their inability to handle OOV words with different meanings
in different contexts when neglecting the contexts in which these words
appear. This is due to the fact that these methods generate a fixed rep-
resentation determined by the word’s morphological structure. In light
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of this consideration, Hu et al. (2019) propose HiCE to include OOV
word contexts. The structure of HiCE consists of three parts: context
encoder, character CNN, and aggregator. It captures the morphological
information and context information of the current OOV word through
context encoder and character CNN respectively, and then uses an
aggregator to infer the embedding of each OOV word by combining
the above two kinds of information.

Although we can try to solve the problem of the polysemy phe-
nomenon by introducing the contexts of an OOV word itself, this
method still faces a major challenge: the frequency of words that have
not appeared in the vocabulary is often low in downstream tasks.
Therefore, simply introducing the contexts of an OOV word itself is not
enough to provide enough semantic information. To address this chal-
lenging issue, we attempt to learn OOV word embeddings by imitating
three strategies in human reading comprehension mechanism and use
the classical ‘‘distributed hypothesis’’ (Harris, 1954) based on similar
contexts to learn relevant embeddings for OOV words and compensate
for the lack of context information in previous OOV word embedding
learning models.

Currently, research on human reading comprehension mechanism
has been very rich, and the current widely accepted one is the top-
down human reading theory (Angosto et al., 2013). The top-down
reading theory holds that to interpret a piece of information, people
need to start from the meaning of a paragraph, and infer according
to the meaning of sentences and words, rather than focusing only
on words in the bottom-up reading theory. In this way, the reader’s
grasp of sentence meaning, understanding of various suffixes, and prior
knowledge becomes crucial.

In the top-down reading process, humans can use their cognitive
skills to implement three strategies to understand unknown words.
These three strategies are: synonym substitution, word form correction,
and word meaning inference (Tunmer and Nicholson, 2011; Tunmer
and Hoover, 2019; Maluf and Cardoso-Martins, 2013). According to
the ‘‘distributed hypothesis’’, words that appear in similar contexts
tend to have similar semantics. When readers encounter new words
in the reading process, they will try to find those known words that
have similar contexts with the current new words to infer the meaning
of new words; and when readers encounter words that have similar
morphological structures with the words they know, they will speculate
whether there is a spelling error in the current word and decode
the current word; in addition, readers will also use the meaning of
sentences where the current word has appeared to guess the meaning
of the current word, or use some prefixes or suffixes unique to word
formation to reason (Maluf and Cardoso-Martins, 2013; Gülçehre et al.,
2016; Taylor et al., 2011).

The existing OOV word embedding learning models only use the
last two strategies in the top-down reading process and ignore the
role of the ‘‘synonym substitution’’ strategy, rendering the semantic
information related to OOV words cannot be mined to the maximum
extent. Therefore, we introduce the concept of ‘‘similar contexts’’ and
learn the relevant embedding of OOV words based on the ‘‘distributed
hypothesis’’ (Harris, 1954) by using similar contexts to compensate
for the lack of context information in previous OOV word embedding
learning methods.

The main contributions of our work can be summarized as follows:
First, we are not just integrating the morphological structure of words
and direct contextual information without deeply mining the semantic
information that can be provided in the contexts, but rather proposing
and introducing the concept of ‘‘similar contexts’’, and using the famous
‘‘distributed hypothesis’’ as the theoretical basis to search for known
words with ‘‘similar contexts’’ based on the contexts of OOV words to
help us infer more reasonable word embeddings for OOV words, which
addresses the issue of insufficient context information in OOV word
embedding learning models. Second, we design three corresponding
strategies by mimicking the three strategies used by humans in reading
comprehension, propose an OOV word embedding learning frame-

work based on human reading comprehension mechanism, and further
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explore the context information of OOV words using the ‘‘similar con-
texts’’ we proposed. Third, we compare the performance of our model
with other baseline models in multiple tasks, and the experimental
results validate the feasibility and effectiveness of our method.

In the following, Section 2 discusses related work; Section 3 intro-
duces our method; Section 4 presents our experiments; Section 5 is the
conclusion and future work.

2. Related work

2.1. Word embedding learning based on OOV word morphological structure

Considering that the meaning of words is often related to the mor-
phological structure of words such as word prefixes and suffixes, some
methods embed character-level features into word embeddings during
training (Wieting et al., 2016; Kim et al., 2018; Edizel et al., 2019;
Zhang et al., 2019; Bojanowski et al., 2017). One major disadvantage
of these methods is that they often require pre-training from scratch
and occupy a large amount of computing resources or memory. For
example, FastText uses about 2 million n-gram characters to generate
embeddings for OOV words. Some simpler models have been proposed
that generate embeddings for OOV words using only the surface form
of words by imitating well-trained word embeddings (Pinter et al.,
2017; Zhao et al., 2018; Sasaki et al., 2019; Fukuda et al., 2020).
However, the word formation may be complex and highly internally
structured (Anderson, 1992), and the performance of such methods is
often not particularly ideal.

To balance the complexity and performance of the model and
solve the scalability problem, LOVE (Learning Out-of-Vocabulary Em-
beddings) (Chen et al., 2022) uses WordPiece (Wu et al., 2016) to
obtain both the character sequence and subwords of words, thus avoid-
ing the highly redundant problem caused by character-level n-grams
used in FastText. In addition, in order to alleviate the deterioration
of model performance caused by character-level perturbations (Liang
et al., 2018a; Belinkov and Bisk, 2018; Sun et al., 2020; Jin et al.,
2020), LOVE also uses possible common character-level errors for data
augmentation to generate corresponding positive samples, which are
used as inputs to the encoder to obtain corresponding embeddings by
pulling them closer to the embeddings corresponding to word pro-
totypes. Considering the improvement of negative samples on model
performance, LOVE also introduces infoNCE loss (Wang and Isola,
2020) for contrastive learning to push negative sample pairs away
from each other. Experimental results show that LOVE performs well
in terms of model complexity, performance and scalability. However,
these methods still rely solely on the morphological structure of OOV
words to infer their meanings, without using the semantic information
of each OOV word.

2.2. Word embedding learning based on OOV word contexts

Methods based on the morphological structure of words have shown
excellent performance in OOV word embedding learning. However,
when dealing with polysemy or some special proper names, the perfor-
mance of methods based solely on morphological structure will decline.
In order to alleviate this problem, methods such as Comick (Garneau
et al., 2019) and HiCE (Hu et al., 2019) have been proposed. However,
such models often only utilize the context of OOV words themselves,
since the frequency of OOV words in downstream tasks is often low,
the additional semantic information brought by these methods is still

insufficient.
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3. Our method

3.1. MIMICK-like module

For a given pre-trained word embedding and OOV words, the core
idea of a MIMICK-like model is to imitate the embedding space of the
background word embedding model through morphological structure
or contexts of OOV words. Specifically, for a given size of vocabulary
 , its corresponding word embedding matrix is 𝐖 ∈ R||×𝑚, for word 𝑤,
ts word embedding is 𝐮𝑤 ∈ R𝑚, the goal of a MIMICK-like model is to
stimate an embedding 𝐯𝑤 ∈ R𝑚 for any word 𝑤 ∉  , and the training
bjective is to minimize the expected distance between 𝐮𝑤 and 𝐯𝑤, as
ollows:

𝑑 = 1
||

∑

𝑤∈
(𝐮𝑤, 𝐯𝑤), (1)

where we treat in-vocabulary word 𝑤 as an OOV word during training
and infer the corresponding embedding based on its morphological
structure and contextual information, and (⋅) is a distance function,
which can be the Euclidean or the cosine distance function. Fur-
thermore, the predicted embedding 𝐯𝑤 is generally obtained by the
following formula:

𝐯𝑤 = 𝜓(𝜁 (𝑤)). (2)

In the above, 𝜁 (⋅) maps 𝑤 to a list of subunits according to the
word’s morphological structure, and then feeds the sequence as input
to function 𝜓(⋅), which generates the predicted embedding. 𝜓(⋅) can
be CNN, RNN or some simple summation functions. As shown in Chen
et al. (2022), the effectiveness of Positional Attention Module (PAM)
was validated to be much better than CNN, RNN, and Self-Attention
(SA) in generating the predicted embedding. Accordingly, we use PAM
as the function 𝜓(⋅). After training, the model can induce embeddings
for any word.

3.2. Reading comprehension mechanism

Another problem that traditional methods based on OOV word con-
texts need to face is that most OOV words have low frequency, so their
contexts are difficult to provide enough effective information. To this
end, we propose a framework based on human reading comprehension
mechanism to achieve embedding learning of OOV words, in order to
make up for the deficiency of insufficient context information. This
mechanism mainly has three strategies:

1. Synonym Substitution: According to the classic ‘‘distributed
hypothesis’’ in linguistics, words with similar contexts tend to
have similar semantics. Based on this theory, people often infer
the meaning of unknown words by looking for known words
with similar contexts.

2. Word Form Correction: In this process, when people encounter
words with typos during the reading process, they often look for
known words with similar word forms and automatically correct
the former to the latter.

3. Word Meaning Inference: This strategy indicates inferring the
meaning of words through the morphological information (pre-
fixes, roots, suffixes, etc.) of unknown words themselves and
context information.

By imitating this reading comprehension mechanism, we propose an
OOV word embedding learning model based on three corresponding
strategies. These three strategies are similarity, decoding and predic-
tion. We will explain these three strategies in detail in the following
text. Fig. 1 shows the word embedding learning framework proposed
by us based on reading comprehension mechanism.
3

3.2.1. Similarity
This strategy corresponds to the ‘‘synonym substitution’’ strategy in

the reading comprehension mechanism. In this strategy, we infer the
meaning of unknown words by using known words with similar con-
texts to make up for the deficiency of insufficient context information
in previous OOV word embedding learning work.

First of all, for word 𝑤 ∈  , in addition to obtaining its corre-
sponding embedding 𝐮𝑤 ∈ R𝑚 in traditional methods, we also need to
obtain its context embedding 𝐜𝑤 ∈ R𝑚. We introduce HiCE (Hu et al.,
2019) to obtain the context embedding 𝐜𝑤 of words themselves. The
specific method is: in each round of the few shot learning task, we
randomly select 𝐾 sentences from  = {𝑆1,… , 𝑆𝑞}, where  is the
set of the contexts where the word 𝑤 has appeared. Then, we mask
𝑤 and remove, if any, other OOV words from  to construct a context
𝐾 = {𝑠𝑘}𝐾𝑘=1, where 𝑠𝑘 is the 𝑘th sentence where the word 𝑤 is located.
With respect to the extreme situation where all words in all sentences
that an OOV word has appeared are OOV words that makes contextual
information unusable, our model can still infer an embedding based on
the morphological structure of OOV word itself. Afterwards, we input
𝑠𝑘 to the underlying context encoder 𝐸 and obtain the encoding vector
𝑋, which is:

𝑋 = Concat(𝐸(𝑠1),… , 𝐸(𝑠𝐾 )). (3)

The formula for context embedding 𝐜𝑤 is given below:

𝐜𝑤 = FFN(SA(𝑋)), (4)

where SA is the self-attention layer, and FFN is the feed-forward
network. For OOV word 𝑤′ ∉  , we obtain its context embedding
𝐜𝑤′ ∈ R𝑚 (𝐜𝑤′ = �̄�context in Section 3.2.3) by the same method as
obtaining 𝐜𝑤. When inferring OOV word embedding, we look for 𝑛 (set
to 5 in the experiment) embeddings 𝐜′𝑤𝑗 (𝑗 = 1,… , 𝑛) in 𝐖′ that are

most similar to 𝐜𝑤′ and obtain the word embedding 𝐮′𝑤𝑗 (𝑗 = 1,… , 𝑛)
orresponding to these embeddings. The formula of obtaining similar
mbedding �̄�sim is defined as follows:

̄sim =
𝑛
∑

𝑗=1
𝜌𝑗 ⋅ 𝐮′𝑤𝑗 , (5)

here 𝜌𝑗 = sof tmax(sim(𝐜′𝑤𝑗 , 𝐜𝑤)) and sim(⋅) represents the cosine simi-
arity.

.2.2. Decoding
This strategy corresponds to the ‘‘word form correction’’ strategy

n the reading comprehension mechanism. In this strategy, we add
ositive and negative samples during training to improve the model’s
bility to recognize incorrect word forms.

To alleviate the deterioration of model performance caused by
light perturbations, we refer to LOVE’s method and introduce data
ugmentation and contrastive learning ideas. The specific method is:
enerate five types of positive samples for existing data by swapping,
iscarding, inserting, replacing four character-level methods and syn-
nym replacement to enrich the number of training samples. The first
our augmentation methods imitate adversarial attacks (Schick and
chütze, 2019), i.e., we assume that some OOV words are formed by
ords in the vocabulary being attacked by the first four types, and
any OOV words in real text are actually caused by people typing

ncorrectly. Accordingly, we can generate reliable embeddings for the
ords with typos (OOV words) through these four types of augmenta-

ion strategies. Furthermore, we add the synonym replacement strategy
o ensure that words with different morphological structures but similar
emantics are still embedded close in the embedding space, which
revents our model from overfitting the morphological structures of
ords. At the same time, negative sample examples with similar surface

orms but different meanings are introduced for data enhancement.
onsidering that the MSE used by traditional MIMICK-like models can
nly pull the distance between positive samples closer, we introduce the
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Fig. 1. Out-of-vocabulary word embedding learning based on reading comprehension mechanism.
Fig. 2. Overall framework of the model.
nfoNCE loss function in contrastive learning (Wang and Isola, 2020),
hich focuses on two indicators of Alignment and Uniformity. These

wo indicators are responsible for pulling positive samples closer and
ushing negative samples away respectively. We will elaborate on this
art in Section 3.3. So far, we can obtain word embeddings based on
orphological structure.

.2.3. Prediction
This strategy corresponds to the ‘‘word meaning inference’’ strategy

n the reading comprehension mechanism. In this strategy, similar
o the method of obtaining 𝐜𝑤 in Section 3.2.1, we obtain context

embedding �̄�context by:

�̄�context = 𝐜𝑤′ . (6)

After obtaining �̄�context , it is weighted and added with 𝐯form obtained
in Section 3.2.2 to correct the problem of one word with multiple
meanings that cannot be recognized by morphology-based methods
alone. Finally, the predicted embedding 𝐯𝑤′ is obtained by:

𝐯𝑤′ = 𝛼 ⋅ �̄�context + 𝛽 ⋅ (1 − 𝛼) ⋅ �̄�sim + (1 − 𝛽)(1 − 𝛼) ⋅ 𝐯form, (7)

where 𝛼 = 𝜎(𝑎 ⋅cxt𝑙𝑒𝑛𝑔𝑡ℎ+𝑏), in which, 𝑎 and 𝑏 are learnable parameters.
𝛽 is a hyper parameter (set to 0.75 in the experiment), cxt𝑙𝑒𝑛𝑔𝑡ℎ is the
contextual length of the word 𝑤′, and 𝜎(⋅) is the sigmoid function.

Fig. 2 shows the overall framework of our model.

3.3. Loss function

In this section, we focus on the loss function (⋅). Traditional
MIMICK-like models usually use mean squared error (MSE) to try to
give similar embeddings to words with similar surface forms. However,

MSE can only pull positive sample pairs closer together, but cannot

4

push negative sample pairs further apart and may even pull them closer
together to make the loss as small as possible. To address this prob-
lem, Wang and Isola (2020) proposed infoNCE loss, which optimizes
two properties: Alignment and Uniformity. Alignment describes the
distance between positive sample pairs:

align ≜ E
(𝑥,𝑦)∼𝑝pos

(u𝑥, u𝑦), (8)

where 𝑝pos represents the distribution of positive sample pairs. Unifor-
mity is used to measure whether the learned representation is uniformly
distributed on the hypersphere.

uniform ≜ log E
(𝑥,𝑦)𝑖.𝑖.𝑑∼ 𝑝data

𝑒−𝑡⋅(u𝑥 ,u𝑦), (9)

where 𝑝data is the data distribution and 𝑡 > 0. These two properties
are consistent with our expected vocabulary representation: positive
sample words should be closer together, while negative sample words
should be far apart from each other and finally scattered on the
hypersphere. Our final loss function (⋅) is obtained by adding align
and uniform together, as follows:

 = align + uniform. (10)

4. Experiments

4.1. Datasets and experimental settings

We mainly use two tasks to evaluate word representations, i.e., in-
trinsic and extrinsic evaluation tasks. Intrinsic evaluation directly mea-
sures the syntactic or semantic relationship between words, such as
word similarity in phrases. Extrinsic evaluation measures the perfor-
mance of word embeddings as input features for downstream tasks such

as text classification and named entity recognition (NER). In addition,
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Table 1
The results of intrinsic evaluation on the Chimeras dataset. The highest score in each
column is highlighted in bold, while the second highest score is highlighted with an
underline.

Models 2 sent. 4 sent. 6 sent. AVG

HiCE 36.18 38.41 41.18 38.59
LOVE 40.19 38.99 40.54 39.91

Ours w/o �̄�sim 39.80 38.79 40.97 39.85
Ours 41.43 40.83 43.20 41.82

we also evaluate the performance of the model by conducting ablation
experiments.

Considering that our model uses contextual information to learn
the embedding of OOV words, and the Chimeras (Lazaridou et al.,
2017) dataset provides a small amount of relevant contexts (2, 4, or 6
sentences) for each OOV word. Therefore, we used the Chimeras dataset
for intrinsic evaluation tasks.

For extrinsic evaluation tasks, we used four extrinsic datasets (two
text classification tasks and two NER tasks): MR (Pang and Lee, 2005),
SST2 (Socher et al., 2013), CoNLL-03 (Sang and Meulder, 2003), and
BC2GM (Smith et al., 2008).

In ablation experiments, we used six datasets (six word similarity
tasks): RareWord (Luong et al., 2013), MEN (Donig et al., 2020),
SimLex (Hill et al., 2015), WordSim353 (Agirre et al., 2009), Simverb
(Agirre et al., 2009) and MTurk (Halawi et al., 2012). The background
word model for the experiment is Word2Vec (Herbelot and Baroni,
2017) and the trained contextual corpus is WikiText-103 (Merity et al.,
2017) for all models. Furthermore, our model’s pre-trained vocabu-
lary comprises words and their embeddings that are present in both
the WikiText-103 dataset context corpus and the Word2Vec model
vocabulary, with a size of over 80,000.

Apart from our own model, we included two state-of-the-art models,
i.e., HiCE (Hu et al., 2019) and LOVE (Chen et al., 2022), as baselines
in the experiments. In order to verify the effectiveness of the ‘‘similar
contexts’’ introduced in our model, we also included the 𝖮𝗎𝗋𝗌 𝗐∕𝗈 �̄�sim

odel as a comparison, which is formed by removing the �̄�sim module
rom our model.

.2. Results on intrinsic evaluation tasks

Table 1 shows the experimental results of intrinsic evaluation task
n Chimeras dataset. It can be seen that, our model with �̄�sim achieved
he highest scores compared to other models with the same contexts
2, 4, or 6 sentences). Furthermore, when the number of context
entences increased from 2 to 4, both LOVE and our models’ scores
ecreased, which may be due to some of the same words have different
ord frequencies in the test sets with context sentences of 2 and 4.
owever, as the number of context sentences further increased from
to 6, with no change in test vocabulary and an increase in context

nformation, the scores rose, and were higher than those with 2 context
entences, which indicates that sufficient context information is helpful
or inferring the meaning of OOV words.

In addition, although 𝖮𝗎𝗋𝗌 𝗐∕𝗈 �̄�sim scored higher than HiCE with
the same contexts, its scores were slightly lower than LOVE’s with 2 and
4 context sentences. It was not until the number of sentences increased
from 4 to 6 that the former’s score surpassed the latter’s, which suggests
that introducing OOV word context information alone is insufficient
when the OOV word’s frequency is low. However, with the introduction
of ‘‘similar contexts’’, our model’s scores significantly improved and
were higher than other models’ in all situations. This indicates that the
context information was further mined, making it helpful for our model

to infer the meaning of OOV words.
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Table 2
The results of extrinsic evaluation tasks. The highest score in each column is highlighted
in bold, while the second highest score is highlighted with an underline.

Models Text classification (Acc) NER (F1-score)

MR SST2 AVG CoNLL-03 BC2GM AVG

HiCE 60.49 70.95 65.72 59.38 48.34 53.86
LOVE 74.67 79.58 77.13 71.16 60.30 65.73

Ours w/o �̄�sim 72.86 79.60 76.23 70.77 61.38 66.08
Ours 74.03 80.50 77.27 70.98 63.92 67.45

Table 3
The results of ablation experiments. The highest score in each column is highlighted
in bold, while the second highest score is highlighted with an underline.

Models Word similarity (Spearman’s 𝜌)

RareWord MEN SimLex WordSim353 SimVerb MTurk AVG

HiCE 6.3 8.0 2.3 7.9 1.8 7.4 5.6
LOVE 41.0 63.1 24.7 46.3 25.6 51.7 42.1

Ours w/o �̄�sim 42.3 62.9 27.2 44.2 25.9 55.5 43.0
Ours 41.7 63.0 25.6 47.8 25.6 55.1 43.1

4.3. Results on extrinsic evaluation tasks

Table 2 shows the experimental results of different models on
four extrinsic evaluation tasks. In the text classification task, although
our models did not achieve the highest score in all given datasets,
our model with �̄�sim achieved a best result and a second-best result
espectively. The situation is similar in the named entity recognition
ask, where although our model with �̄�sim did not achieve the highest
core in all datasets, it still obtained the highest score in one dataset
nd the second-highest score in another. Moreover, considering the
verall performance of our model in both the text classification and
amed entity recognition tasks, its average scores were higher than
ther models’, indicating that the ‘‘similar contexts’’ we introduced was
ignificantly helpful for inferring the meaning of OOV words.

.4. Ablation experiments

Table 3 shows the experimental results of our models and base-
ines over six datasets. Noteworthy, since all the datasets in the word
imilarity task do not contain contexts, HiCE actually only uses the
haracter-level CNN module in this task. Compared with other de-
raded models (i.e., the baselines of HiCE and LOVE), our models
btained the highest and the second highest average score in word
imilarity tasks. Specifically, our models performed best in five of
ix word similarity task. This indicates that our method can further
ntroduce additional semantic information to help learn embeddings of
OV words while retaining the advantages of the original model.

. Conclusions

In this paper, we propose an OOV Word embedding learning method
ased on the human reading comprehension mechanism. We provide
dditional semantic information for inferring OOV words by imitating
he ‘‘synonym substitution’’ strategy used by humans when reading. We
ompare our model with other baseline models in the tasks of text clas-
ification, named-entity recognition, and word similarity, respectively.
he results show that our method performs best in most cases, which
hows that the introduction of the concept of ‘‘similar contexts’’ really
elps us to infer the meaning of OOV words.

In addition, some previous methods based on topic modeling and
ontrastive learning have shown excellent performance in downstream
asks such as sentiment analysis with OOV words (Huang et al., 2017;
iang et al., 2018b; Chen and Xie, 2020; Xu et al., 2023). This may
ndicate that these methods have also explored to some extent the
nformation related to the meaning of OOV words. Whether we can
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discover new information similar to our ‘‘similar contexts’’ information
from these methods and further improve the reliability of our inference
of the meaning of OOV words is a question that needs to be considered
in future work.
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