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Abstract
As time goes by, language evolves with word se-
mantics changing. Unfortunately, traditional word
embedding methods neglect the evolution of lan-
guage and assume that word representations are
static. Although contextualized word embedding
models can capture the diverse representations of
polysemous words, they ignore temporal informa-
tion as well. To tackle the aforementioned chal-
lenges, we propose a graph-based dynamic word
embedding (GDWE) model, which focuses on cap-
turing the semantic drift of words continually. We
introduce word-level knowledge graphs (WKGs) to
store short-term and long-term knowledge. WKGs
can provide rich structural information as supple-
ment of lexical information, which help enhance
the word embedding quality and capture semantic
drift quickly. Theoretical analysis and extensive ex-
periments validate the effectiveness of our GDWE
on dynamic word embedding learning.

1 Introduction
Learning changes of language over time is critical to lan-
guage understanding [McMahon, 1994]. An indication of
language evolution is the change of vocabulary and seman-
tics, which arises with the generation of new words and the
meaning drift of old words. Taking the word “apple” as an
example, it referred to a kind of fruit in the past, but it often
refers to a technology company nowadays. Although tradi-
tional word embedding models such as Word2Vec [Mikolov
et al., 2013b] and PPMI-SVD [Levy and Goldberg, 2014]
provide an efficient way for modeling word meaning, they ne-
glect temporal information and generate static word embed-
dings. While contextual word embedding models make im-
pressive progress in various time-invariant natural language
processing (NLP) tasks, their performance degrade on a new
corpus far from the training period [Lazaridou et al., 2021].

Due to the importance of learning language development
and the limitation of prior word embedding models, dynamic
word embedding learning has attracted much attention in re-
cent years. Dynamic word embedding models aim at learning

∗The corresponding author.

word embeddings in different conditions. Since the change
of language over time is one of the most common conditions,
learning dynamic word embeddings often refers to learning
time-specific word embeddings. The key idea of early dy-
namic word embedding models [Kulkarni et al., 2015; Hamil-
ton et al., 2016] is to align word embedding spaces pretrained
on every time slice separately, called “alignment after train-
ing” (i.e., 2-step) method. Later, Yao et al. [2018] proposed to
jointly train the word embedding spaces over all time slices,
so as to avoid the alignment process. However, the above ap-
proach needs to acquire the full corpus before training, which
fails to meet the real-time requirement in practice. Instead of
learning a word embedding space for each time slice, Bam-
ler and Mandt [2017] proposed a probability model to incre-
mentally fine-tune a word embedding space. Unfortunately, it
may forget long-term semantics and fail to capture new mean-
ings with limited contextual information. Additionally, sev-
eral studies developed dynamic contextual word embeddings
by introducing temporal information to model components
[Hofmann et al., 2021] or input texts [Rosin et al., 2022;
Dhingra et al., 2022]. But their high costs for training hin-
der them from adapting to rapidly changing conditions.

In this work, we propose a graph-based dynamic word
embedding (GDWE) model1, which continuously updates a
word embedding space because such a mechanism is more
consistent with the development of language [Bamler and
Mandt, 2017]. To tackle the aforementioned challenges, we
introduce word-level knowledge graphs (WKGs) to encode
and store past word co-occurrence knowledge, since seman-
tic drift is often reflected by the change of co-occurring words
[Kutuzov et al., 2018]. Besides, the word co-occurrence
graph has valuable structural information and can be adapted
to support efficient streaming updates [Spitz and Gertz,
2018]. It is worth noting that language changes more sig-
nificantly in a longer period. For example, the word “you”
in modern English was written as “thee” in the Middle Ages,
and it is often abbreviated as “u” in informal writing these
years. To distinguish characteristics of language at different
time stages, we construct and maintain WKGs which store
long-term and short-term knowledge separately. Then, we
utilize past knowledge encoded in both short-term and long-

1Our code and supplementary materials are available in public
at: https://github.com/luyy9apples/GDWE.
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term WKGs to learn better dynamic word embeddings at
present. Furthermore, to improve the efficiency of GDWE,
we train on all texts only once. The auxiliary co-occurrence
information retrieved from WKGs help GDWE avoid the risk
of underfitting in online learning, and balance well between
efficiency and effectiveness. We summarize the contributions
of our work as follows:

• We introduce a short-term and multiple long-term
WKGs to encode word co-occurrence information for
capturing semantic drift over time.

• We propose a graph-based dynamic word embedding
model named GDWE, which updates a time-specific
word embedding space efficiently.

• We theoretically prove the correctness of using WKGs to
assist dynamic word embedding learning and verify the
effectiveness of GDWE by cross-time alignment, text
stream classification, and qualitative analysis.

2 Related Works
Different from static word representations, dynamic word
embeddings can capture semantic drift within language.
Since the cost functions of most word embedding models are
rotation-invariant, word embedding spaces trained on differ-
ent time slices are not in the same latent semantic space [Yao
et al., 2018], thus the geometric relations among word em-
beddings of different time slices lack semantic information.

Early dynamic word embedding models usually adopt a 2-
step method. First, they pre-train a word embedding space
for each time slice using static word embedding models
like Word2Vec [Mikolov et al., 2013b]. Then they align
these temporal embedding spaces. Specifically, Kulkarni
et al. [2015] achieved alignment by keeping embeddings
of semantics-invariant words (i.e., anchor words) the same
in each time slice. Similarly, Hamilton et al. [2016] used
an orthogonal transformation to align embeddings. Differ-
ent from the above 2-step approach, Yao et al. [2018] pro-
posed a model called DW2V that jointly trains time-specific
word embedding spaces by matrix factorization. DW2V
avoids the alignment process and shares semantic informa-
tion across time slices. Recently, Gong et al. [2020] consid-
ered to learn transformations from a general embedding space
to temporal embedding spaces. Following the idea of fine-
tuning word embeddings incrementally [Kim et al., 2014;
Kaji and Kobayashi, 2017], Bamler and Mandt [2017] pro-
posed a probabilistic model using approximate Bayesian in-
ference to learn dynamic word embeddings continuously.

On the other hand, there are some works [Hu et al., 2019;
Giulianelli et al., 2020] employing contextual word embed-
dings [Devlin et al., 2019] to investigate semantic drift. Since
the contextual word embeddings used before are not dynamic,
Hofmann et al. [2021] proposed a dynamic contextual word
embedding model, which transforms pre-trained BERT em-
beddings into time-specific word embeddings through tem-
poral neural networks. Apart from introducing time-specific
model components, Rosin et al. [2022] and Dhingra et
al. [2022] modified input texts by prepending time tokens.
Unfortunately, the results of some shared tasks [Schlechtweg

et al., 2020; Basile et al., 2020] indicated that contextual em-
beddings perform quite limited on unsupervised lexical se-
mantic change (LSC) detection. Although contextual embed-
ding based methods first top the leaderboard in the LSC task
with label supervision and external linguistic resources, these
different results among the LSC tasks may lie in the differ-
ence between models rather than that between contextual and
traditional embeddings [Kutuzov and Pivovarova, 2021]. Be-
sides, contextual embedding models require high computa-
tional resources for pre-training or fine-tuning, which remains
an obstacle for adapting them to dynamic conditions.

3 Proposed Method
3.1 Problem Definition
For the convenience of the description, we first define the con-
tinuous learning paradigm of dynamic word embeddings. As
presented in [Hofmann et al., 2021], the training corpus for
dynamic word embeddings is a text stream in which new doc-
uments constantly appear. While a word embedding space is
updated continuously in training, we split the text stream D
into N time slices based on timestamps for the convenience
of testing. Let D(i) denote the document set containing all
the texts in the i-th time slice. The goal of dynamic word em-
bedding models is to obtain a word embedding space Ui and
a context embedding space Vi, which form a snapshot of the
continuously updated embedding space in the i-th time slice.

3.2 Model Architecture
Our GDWE continuously updates a word embedding space,
where the coordinate axis remains unchanged. Therefore,
GDWE can avoid the aforementioned alignment process. Ad-
ditionally, we introduce WKGs to help our model capture
semantic drift with limited lexical information. WKGs not
only hold past word co-occurrence information, but also con-
tain structural information such as common neighbors. To
improve the efficiency of WKGs, we divide D(i) into a se-
quence of fixed-size mini-batches {B(i)1 , . . . ,B(i)Mi

} according
to timestamps, whereMi denotes the number of mini-batches
in the i-th time slice. Then we update and utilize WKGs by
mini-batches, which approximates continuous learning when
the mini-batch size is relatively small.

Figure 1 illustrates the architecture of our GDWE, which
contains the following modules: (1) Construct and update
the short-term WKG. To capture short-term knowledge, we
first construct the current WKG G(i)j for B(i)j . Then, we cu-

mulatively update a short-term WKG G(i)s,<j based on G(i)j ;
(2) Construct and update long-term WKGs. After training
all mini-batches, we obtain a WKG G(i)s,<Mi

which is con-

sidered as a long-term WKG G(i)l containing representative
knowledge of D(i). Then we update the long-term WKGs
set G(i+1)

L using G(i)l ; (3) Retrieve knowledge from WKGs.
When training on B(i)j , we retrieve word relevance knowl-

edge from the short-term WKG G(i)s,<j and long-term WKGs

G(i)L of past time slices; (4) Update dynamic word embed-
dings. Both the auxiliary knowledge and lexical information
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Figure 1: Model architecture of GDWE, in which, G(i)
L = {G(i)

L,1, . . . ,G
(i)
L,m} is the set of compacted long-term WKGs for the i-th time slice,

where m is the size of G(i)
L . Besides, G(i)

l denotes the long-term WKG for D(i), while G(i)
j and G(i)

s,<j are the current WKG and the short-term

WKG for B(i)
j , respectively. Finally, (t, c) denotes a target word and its context word, and (t′, n) denotes a node and its neighbor in a WKG.

of B(i)j are adopted to update Ui and Vi using the stochastic
gradient descent (SGD) optimization method.

3.3 Training Strategy
In this section, we explain the training strategy of our GDWE
in detail, including the update of WKGs and dynamic word
embeddings primarily.
Definition of WKGs. A WKG is a weighted and undi-
rected graph where each node represents a unique word. If
two words co-occurred in the original text, then there is an
edge between them. And the edge weight indicates their co-
occurrence frequency. For a clearer explanation, we denote a
WKG as G(V , E), where V is nodes set and E is edges set.
Update the short-term WKG. Constructing lexical graphs
can provide richer information than sequential data of plain
texts, but it may mutually introduce noise [Zuckerman and
Last, 2019]. Therefore, we denoise the short-term WKG in
pre-processing. Intuitively, word pairs that co-occurred fre-
quently are more likely to reappear in the future, and their se-
mantic correlation tends to be accurate. Accordingly, we pro-
pose a rule-based method for updating the short-term WKG.
For each edge, we calculate a credit score based on its weight:

score(e) =
g(we)

g(wmax)
, (1)

where we is the weight of edge e and wmax is the maxi-
mum edge weight in the WKG. g(x) = lnx is a smooth-
ing function. The denominator regularizes the edge score to

Algorithm 1 Short-term WKG update algorithm

Input: Mini-batches {B1, · · · ,BM};
Hyper-parameters: Thresholds δe and δd;
Output: Short-term WKG Gs,<j , where j = {1, · · · ,M}.

1: Let Gs,<0 = (∅, ∅).
2: for j = 1 to M do
3: Construct the current WKG Gj of Bj .
4: Gs,<j ← UpdateWKG(Gj ,Gs,<(j−1), δe, δd).
5: yield short-term WKG Gs,<j .
6: end for

[0, 1] and makes score(e) adaptive to WKGs with different
scales. Later, we only reserve edges with a score higher than
a threshold δe. Since a word with few neighbors may pro-
vide little information for other words, we use a threshold δd
to weed out nodes with low degrees. Algorithm 1 shows the
update process of the short-term WKG.

Update long-term WKGs. For preventing capacity satura-
tion, we cannot save WKGs of all past time slices. Moreover,
the past knowledge may become “outdated” and turn into
noise as time evolves. Therefore, for the i-th time slice, we
only save long-term WKGs of its previous (m−1) time slices
and one long-term WKG obtained by compacting WKGs of
the [1, i − m] time slices using Algorithm 2, which retains
longer-term knowledge. The update process of long-term
WKGs is shown in Algorithm 3.
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Algorithm 2 UpdateWKG(Ga,Gb, δe, δd)
1: Union two WKGs: G(V , E)← Ga

⋃
Gb.

2: for each e ∈ E do
3: Calculate score(e) by Equation (1).
4: end for
5: Eu ← {e ∈ E|score(e) > δe}.
6: Vu ← {n ∈ V|deg(n,G) > δd}.
7: return updated WKG Gu = (Vu, Eu).

Algorithm 3 Long-term WKGs update algorithm

Input: Document streams {D(1), · · · ,D(N)} and their
corresponding mini-batch sizes {M1, · · · ,MN};
Hyper-parameters: The number of long-term WKGs m;
thresholds δe and δd;
Output: Long-term WKGs G(i)L = {G(i)L,1, · · · ,G

(i)
L,Ki
},

where i = {2, · · · , N} and Ki = |G(i)L |.

1: For the 1st time slice: G(1)L ← {}.
2: for i = 2 to N do
3: Construct a WKG G(i−1)

l ← G(i−1)
s,<Mi−1

by Algorithm

1 with input of D(i−1) = {B(i−1)
1 , · · · ,B(i−1)

Mi−1
}.

4: G(i)L,a ← G
(i−1)
L,a where a = {1, · · · , |G(i−1)

L |}.
5: Push G(i−1)

l into G(i)L : G(i)
L,|G(i−1)

L |+1
← G(i−1)

l .

6: if |G(i−1)
L |+ 1 > m then

7: G(i)L,2 ←UpdateWKG(G(i)L,1,G
(i)
L,2, δe, δd).

8: Pop G(i)L,1 from G(i)L : G(i)L,b ← G
(i)
L,(b+1), where b =

{1, · · · ,m}.
9: end if

10: yield long-term WKGs G(i)L .
11: end for

Retrieve knowledge from WKGs. The key idea of utiliz-
ing WKGs is to extract word co-occurrence knowledge from
short-term and long-term WKGs as supplement of lexical in-
formation. Specifically, considering a word that exists in both
the current WKG (denoted as G) and one of the short-term
and long-term WKGs (denoted as Gk ∈ {Gs,GL}), we sam-
ple its direct neighbors in Gk as auxiliary information. The
sampling probability of each neighbor is defined as follows:

p(n|t,Gk) ∝
wn,t

deg(n,Gk)
, (2)

where wn,t is the weight of the edge between the target word
t and its neighbor word n, and deg(n,Gk) denotes the degree
of n in Gk. The sampling strategy is based on the assumption
that a higher edge weight implies a closer correlation between
two words. Besides, we conduct a penalty based on degree,
since a word has a lot of neighbors may contain limited se-
mantic information, such as articles and personal pronouns.

However, the above neighbor sampling method cannot dis-
tinguish whether the meaning of the target word has drifted.
So there is a risk of “replaying” neighbor words related to
the target word’s old meaning and hindering the model from

capturing semantic drift. According to the distributional hy-
pothesis, words which often have the same neighboring words
tend to be semantically similar. Therefore, we estimate the
similarity between the meanings of a target word in different
time slices using the classic Jaccard’s coefficient as follows:

sim(tG , tGk
) =
|N (t,G) ∩N (t,Gk)|
|N (t,G) ∪N (t,Gk)|

, (3)

where N (t,G) denotes neighbors of the target word t in a
WKG G. The numerator represents the common neighbors’
number of t in G and Gk, and the denominator is a regular-
ization term. With a similarity higher than a threshold δs, the
neighbors of t in Gk are used as supplementary information.

Update dynamic word embeddings. Inspired by the in-
cremental skip-gram with negative sampling (ISGNS) model
[Kaji and Kobayashi, 2017], we define the loss function
for updating word embeddings continually with word co-
occurrence information as follows:

Lt
1 =−

∑
c∈Ct

[ψ+
t,c + kEs∼qt(s)ψ

−
t,s], (4)

where ψ±
t,x = lnσ(±ut(vx)

T ). c is a context word of the tar-
get word t in a sliding window Ct. ut ∈ U denotes the word
embedding of the target word t, while vc ∈ V denotes the
embedding of the context word c. As we apply the adaptive
negative sampling algorithm, s is a negative sample drawn
from a smoothed uniform distribution (i.e., noise distribution)
with sampling probability qt(s) ∝ f(s)β , where f(s) is the
frequency of word s occurred before word t in the text stream
and β ∈ [0, 1] is a smoothing factor. k is the number of nega-
tive samples. σ(·) is the sigmoid function.

As mentioned earlier, we retrieve knowledge from short-
term and long-term WKGs as supplementary samples. For
B(i)j , the loss function using WKGs is defined as follows:

Li,j
2 =−

∑
Gk

∑
t′
dEn∼p(n|t′,Gk)[ψ

+
t′,n

+ kEs∼qi,j(s)ψ
−
t′,s],

(5)

where Gk ∈ {G(i)s,<j ,G
(i)
L }, t′ ∈ (V(i)

j ∩Vk), and {G(i)s,<j ,G
(i)
L }

denotes the short-term and long-term WKGs of B(i)j . The tar-
get word t′ satisfies sim(t′G(i)

j
, t′Gk

) ≥ δs, and n is a neigh-

bor word of t′ in Gk sampled with probability p(n|t′,Gk). d
is the number of sampled neighbors. In summary, the total
loss function of our model can be written as follows:

L =
∑
t∈D
Lt
1 +

N∑
i=1

Mi∑
j=1

αLi,j
2 , (6)

where α is a hyper-parameter for balancing contributions of
lexical data and supplementary information from WKGs.

4 Theoretical Analysis
In this section, we theoretically prove the correctness of
our WKG-based loss function L2, which utilizes word co-
occurrence knowledge from WKGs to update dynamic word
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embeddings. First, we prove that for a complete WKG
G(V , E) constructed on a corpus D = {D(1), . . . ,D(N)}, it
contains all the word co-occurrence information of D under
general conditions. Then, we prove that L2 is a form of the
loss function of SGNS when we apply SGNS to G.
Theorem 1. If δe = δd = 0 and m = 1, then a WKG G
constructed on the complete corpus D encodes all word co-
occurrence information of D.

Proof. According to Algorithms 1 and 2, for the update pro-
cess of short-term WKG, we have

G(i)s,<Mi
= UpdateWKG(G(i)Mi

,G(i)s,<(Mi−1), 0, 0)

= G(i)Mi
∪ G(i)Mi−1 ∪ · · · ∪ G

(i)
1 .

Similarly, for the long-term WKG, we have

G(i)L,1 = UpdateWKG(G(i−1)
L,1 ,G(i−1)

L,2 , 0, 0)

= G(1)l ∪ G(2)l ∪ · · · ∪ G(i−m+1)
l , where G(i)l = G(i)s,<Mi

.

Since G(i)L = [G(i)L,1, . . . ,G
(i)
L,m], we have G = G(N)

L,1 =

G(1)l ∪· · ·∪G
(N)
l whenm = 1, thus Theorem 1 is proved.

Theorem 2. If δe = δd = 0 and m = 1, then L2 is a form of
the loss function of SGNS when we apply SGNS to a WKG.

Proof. According to Theorem 1, the loss function L2 can be
rewritten as follows:

L2 = −
∑
t∈V

dEn∼p(n|t,G)[ψ
+
t,n + kEs∼q(s)ψ

−
t,s].

If we don’t penalize neighbors based on their degrees, i.e.,
p(n|t,G) = wt,n

Z , where Z =
∑

n′∈N (t,G)
wt,n′ , then we have

L2 =−
∑
t∈V

d

Z

∑
n∈N (t,G)

wt,n[ψ
+
t,n + kEs∼q(s)ψ

−
t,s].

Corollary 1. According to Theorem 1, we have: (1) V is the
same as the vocabulary VD of D; (2) The weight of an edge
between t and n in G is equal to their co-occurrence times in
D, as wt,n = #(t, n); (3) The neighbors of a target word t in
G is equal to all context words of t in D, as N (t,G) = Ct =
∪{Cpos|D[pos] = t}, where D[pos] is the pos-th word in D.

Clearly, we have Z =
∑
c∈Ct

#(t, c), thus

L2 =−
∑
t∈VD

d

Z

∑
c∈Ct

#(t, c)[ψ+
t,c + kEs∼q(s)ψ

−
t,s].

The loss function of SGNS [Mikolov et al., 2013a] is de-
fined as follows:

LSGNS = −
|D|∑
i=1

∑
c∈Ci

[ψ+
i,c + kEs∼q(s)ψ

−
i,s]

= −
∑
t∈VD

∑
c∈Ct

#(t, c)[ψ+
t,c + kEs∼q(s)ψ

−
t,s].

In practice, d is set to a small constant and d
Z approximates

the sub-sampling strategy of SGNS. Thus, L2 is a form of
LSGNS when we apply SGNS to a WKG.

Task Dataset #Train #Val #Test #Label
Cross-time
Alignment NYT - 2,205 8,823 -

Text Stream
Classification

NYT 47,423 6,759 12,531 7
NYT (low) 32,475 4,624 9,260 7

Arxiv 1.062,296 151,748 303,506 8

Table 1: Statistics of datasets.

5 Experiments
5.1 Datasets and Experimental Setting
We employ two diachronic datasets to compare the perfor-
mance of different dynamic word embedding models: (1)
NYT2: A collection of news from New York Times with
99,872 articles. We set the size of the time slice to one
year, which generates 27 time slices from 1990 to 2016. (2)
Arxiv3: A collection of abstracts from papers published on
the Arxiv website from 2007 to 2021. There are 1,952,261
documents over 15 yearly time slices. Since GDWE learns
dynamic word embeddings online, we apply the Misra-Gries
algorithm to build a dynamic vocabulary by following Kaji
and Kobayashi [2017], in which, the maximum size of the
dynamic vocabulary is set to 100,000. Since matrix factoriza-
tion based baselines have high memory costs for storing data
matrices, they build a static vocabulary by filtering words that
occurred less than 200 times according to Gong et al. [2020].
The static vocabulary sizes of NYT and Arxiv are 21,435 and
26,313, respectively.

To evaluate the alignment quality of temporal embedding
spaces, we use the testing set constructed by Yao et al. [2018]
on NYT to conduct a cross-time alignment experiment. We
also perform text stream classification on NYT and Arxiv,
which evaluates the effectiveness of dynamic word embed-
ding models on diachronic downstream tasks. To validate the
role of WKGs in learning word embeddings with limited co-
occurrence information, we further perform text stream clas-
sification by considering words with an occurrence frequency
lower than 100 on the NYT dataset. Specifically, we use the
most popular topics and academic subjects as the classifica-
tion labels for documents in NYT and Arxiv, respectively.
The statistics of all datasets are shown in Table 1.

The baseline models include TW2V [Kulkarni et al., 2015]
and AW2V [Hamilton et al., 2016], which both adopt the 2-
step approach. We also employ DW2V [Yao et al., 2018]
and CW2V [Gong et al., 2020], which jointly process all
time slices for comparison. Besides, DCWE [Hofmann et
al., 2021] is a baseline which introduces temporal informa-
tion to pre-trained BERT embeddings. We also conduct abla-
tion experiments to validate the effect of each component in
WKGs. Specifically, GDWE w/o WKG refers to a model that
only uses L1 to update dynamic word embeddings4. GDWE
w/o JC refers to a model with δs = 0, which uses neigh-
bors from all past WKGs without filtering knowledge that
disagrees with the current WKG estimated by Equation (3).

2https://www.dropbox.com/s/nifi5nj1oj0fu2i/data.zip?dl=0
3https://www.kaggle.com/Cornell-University/arxiv
4Note that GDWE w/o WKG is theorectically similar to ISGNS

and [Bamler and Mandt, 2017].
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Figure 2: MRR of cross-time alignment evaluation.

Model MRR MP@1 MP@3 MP@5 MP@10
TW2V 0.151 0.107 0.175 0.207 0.260
AW2V 0.111 0.072 0.132 0.160 0.211
DW2V 0.289 0.253 0.309 0.346 0.356
CW2V 0.392 0.314 0.453 0.491 0.541
DCWE 0.265 0.255 0.272 0.276 0.291
GDWE w/o WKG 0.402 0.343 0.442 0.479 0.532
GDWE w/o JC 0.400 0.338 0.437 0.481 0.543
GDWE w/o GL 0.408 0.348 0.447 0.488 0.544
GDWE w/o Gs 0.415 0.354 0.450 0.496 0.552
GDWE 0.422 0.356 0.464 0.512 0.571

Table 2: Overall results of cross-time alignment evaluation. The
performance of our GDWE is significantly better than all baselines
(p < 0.05 in t-test), except for the baseline of CW2V and four
ablation models of GDWE before 2012.

GDWE w/o GL and GDWE w/o Gs are models without using
long-term WKGs GL or short-term WKG Gs, respectively.

For hyper-parameter settings of GDWE and baselines, we
uniformly set the window size to 5, the subsampling ratio to
10−4, the number of negative samples to 10. The embedding
size of DCWE is 768, which is equal to that of pre-trained
BERT embeddings. For GDWE and other baselines, the em-
bedding size is set to 50. We use grid search to determine the
best values of other hyper-parameters for GDWE and most of
baselines, while DW2V, CW2V, and DCWE use the optimal
hyper-parameter settings reported in their original papers. To
ensure fair comparisons and affordable time costs, we train
DCWE for 7 and 1 epochs on NYT and Arxiv, respectively,
and we adopt embeddings generated by the dynamic compo-
nent of DCWE as its results.

5.2 Cross-time Alignment Evaluation
In Yao et al. [2018], each testing sample contains two words
sharing similar semantics at different time slices. For exam-
ple, bush-1990 and obama-2008 build up a test sample that
represents the president of the United States in different peri-
ods. We evaluate whether obama-2008 is among the top-20
closest neighbors of bush-1990 in the word embedding space
of 2008, using MRR and MP@K as metrics.

As Figure 2 shows, the performance of most models en-
hanced gradually as time passed, except for TW2V and
AW2V. While WKGs continuously accumulated knowledge
over time, GDWE achieved the best results and widened the
gap in effectiveness as compared with the top-performing
baseline of CW2V. Table 2 presents the overall results of em-

δe δd MRR MP@1 MP@3 MP@5 MP@10
0.05 1 0.363 0.331 0.416 0.455 0.507
0.1 2 0.375 0.327 0.426 0.473 0.537
0.2 4 0.422 0.356 0.464 0.512 0.571

Table 3: Overall results of cross-time alignment evaluation with
different values of δe and δd.

bedding space alignment, indicating that GDWE has the most
notable ability to capture semantic drift, while the poor results
of 2-step models (i.e., TW2V and AW2V) revealed their lim-
itations. Besides, CW2V outperformed other baselines, be-
cause it explicitly learned the transformation from the general
embedding space to time-specific embedding spaces. More-
over, DCWE obtained poor results, indicating that it is dif-
ficult for pre-trained BERT embeddings to capture semantic
drift over time. For ablation models of GDWE, the results
of GDWE w/o JC and GDWE w/o WKG were close, which
reveals the importance of distinguishing polysemous target
words in WKGs using Jaccard’s coefficient. Moreover, long-
term WKGs play more important roles in boosting the perfor-
mance than the short-term WKG, which agrees with the fact
that languages often develop slowly in a long time.

For completeness, we here conduct supplementary ablation
analysis. First, we analyze the influence of the number of
long-term WKGs (i.e., m). We set m to different values and
fix other hyper-parameters. The results indicated that the ef-
fect of GDWE reached a peak (MRR = 0.422) when m = 5,
while it obtained the worst value (MRR = 0.403) when there
is only one long-term WKG (i.e., m = 1). Since the long-
term WKG fuses all past semantic information, it may fail
to distinguish words that hold different meanings among dif-
ferent time slices. Furthermore, when m keeps increasing to
values over 5, the effect of GDWE dropped due to the incor-
poration of outdated information.

To validate the effect of denoising WKGs in training
GDWE, we also construct and update WKGs with relaxed
constraints. Specifically, we set δe to low values of 0.1 and
0.05, which results in reserving more low-weighted edges in
WKGs. Besides, δd is set to 2 or 1, which means that WKGs
contain nodes with few neighbors. As shown in Table 3, the
weight-based edge filtering and degree-based node filtering
methods are effective in denoising WKGs. It also validates
the importance of denoising in lexical knowledge graphs.

5.3 Text Stream Classification
We follow Hofmann et al. [2021] to conduct text stream clas-
sification. First, we adapt a two-layer FNN classifier by pro-
cessing the documents of each new coming time slice. Then
we use the updated classifier to predict the labels of docu-
ments in the current, past, and future testing sets. For NYT
and Arxiv, we use an attention-based Bi-LSTM model to ob-
tain document embeddings with the input of pre-trained dy-
namic word embeddings [Yang et al., 2016]. For NYT (low),
we use the average of embeddings of all low-frequency words
in a document as its representation. Figure 3 shows the model
performance in terms of accuracy and macro-F1.

Different from the cross-time alignment evaluation, this
task validates the alignment of anchor words over time im-
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Figure 3: Results on text stream classification. “-” means that the result can not be obtained by the corresponding model.

plicitly, because most of the words in a document may be
semantics-invariant. For this reason, CW2V and DW2V
which performed well in cross-time alignment, obtained the
worst results in this task. Conversely, TW2V and AW2V
showed their advantages in the alignment of anchor words.
Though DCWE performed poorly in the unsupervised cross-
time alignment evaluation even with adequate training, it is
quite competitive in this supervised text stream classifica-
tion task using similar computational time with other base-
lines, which is consistent with the results in prior LSC tasks
[Schlechtweg et al., 2020; Basile et al., 2020; Kutuzov and
Pivovarova, 2021]. The different results of DCWE in these
two tasks indicate that contextual embedding models can sig-
nificantly improve the effect of NLP downstream tasks, but
their performance depend on label supervision and abun-
dant training samples due to their massive model parameters.
Since there may be fewer semantic changes occurring in aca-
demic papers than in news, the differences between the per-
formance of GDWE, TW2V, and DCWE are slight on Arxiv.
Notably, GDWE performed quite well on the current and fu-
ture documents of NYT, owing to its outstanding ability of
modeling language evolution.

Furthermore, we explore the influence of WKGs on learn-
ing embeddings for low-frequency words. As the results
of current documents in NYT (low) show, WKGs boosted
the performance of text stream classification that only uti-
lized words with an occurrence frequency lower than 100.
Since GDWE w/o JC adopted a “high risk” strategy and used
knowledge from all past WKGs, it achieved the best perfor-
mance in learning high-quality embeddings with limited con-
textual information. Therefore, WKGs can alleviate the un-
derfitting problem of online learning to a certain extent.

5.4 Trending Words Detection
As an important application of dynamic word embeddings
and WKGs, mining time-specific trending words from a text
stream of real-time news like NYT can assist public opin-
ion detection. Following Saeed et al. [2019], we capture the
boost of trending words through the heartbeat graph G(i)h built

from WKGs of the current and previous time slices (denoted
as G(i)l and G(i−1)

l ). Then we assume that a trending word
tends to encounter significant semantic drift and have a high
centrality in G(i)h . Specifically, we use the distance between
the current and previous embeddings of a word t to measure
its degree of semantics change, which is defined as follows:

SC(t) =∥ e(i)t − e
(i−1)
t ∥22, (7)

where e
(i)
t is the embedding of t in the i-th time slice. Be-

sides, we estimate the centrality of t by summing up the pos-
itive weights of its connected edges in G(i)h as follows:

C(t) =
∑

n∈N (t,G(i)
h )

log2(e
(i)
t (e(i)n )T + 1)× wn,t, (8)

where n ∈ N (t,G(i)h ) is a neighbor of t in G(i)h with
e
(i)
t (e

(i)
n )T > 0 and wn,t is the weight of the edge between n

and t. Then, the trending score of t is defined as follows:

TS(t) = SC(t)× C(t). (9)

Figure 4 illustrates top-25 trending words and their con-
nections for NYT news in 2001. The trending words detec-
tion approach based on WKGs effectively discovered that the
9/11 terrorist attack was the most concerning social event in
2001. Moreover, details of the event were captured, includ-
ing the terrorists (“osama bin laden”), the terrorist organiza-
tion (“qaeda”), and the occurrence time (“sept”). In addition,
there was a breakthrough in human embryonic stem cell re-
search in 2001 according to trending words. Finally, the result
of trending words detection also includes words with general
meanings such as entertainment-related words (“singer”).

5.5 Lexical Semantic Drift
To validate the ability of GDWE to capture lexical seman-
tic drift qualitatively, we describe the changing semantics of
representative target words “apple” in NYT and “network” in
Arxiv through their neighbor words at different time slices.
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Figure 4: Top-25 trending words and their connections for NYT
news in 2001 detected from WKGs. The diameters of nodes and the
thickness of edges are proportional to their weights.

As shown in Table 4, the neighbors of “apple” gradually
drifted from dessert-related words to electronic technology-
related words. Additionally, GDWE effectively revealed the
products and technologies that attracted attention in different
periods. For example, personal computers (“imac”) were the
main products of the Apple company in 2008. In 2010 and
2011, the hot spot shifted to portable devices (“iphone” and
“ipad”) and their key technologies, including wireless net-
work technology (“3g”) and operating systems (“android”).
And the neighbor words of “apple” in 2016 changed to other
technology companies (e.g., “microsoft” and “google”).

For the target word “network”, its semantics gradually
drifted from communication networks to neural networks
(NNs) with the development of computer science. Specif-
ically, its neighbor words in 2010 and 2014 were mainly
technical terms related to communication networks, includ-
ing “p2p”, “internet”, and “overlay”. In recent years, NNs
have gained widespread attention and GDWE can discover
the development of NN architectures over time, from feedfor-
ward NNs and generative networks in 2017 to convolutional
NNs in 2018, and then to graph convolutional NNs in 2019.

6 Efficiency Analysis
6.1 Time Complexity
In this part, we analyze the time complexity of our GDWE,
especially on the update and utilization of WKGs. For a
WKG G, we use V and E to denote the numbers of its nodes
and edges, respectively. Besides, D denotes the average de-
gree of each node in G. According to Algorithm 2, it takes a
merge of two WKGs, a traverse of all nodes, and a traverse of
edges to update a WKG, which costs O(2E + V ), and so as
the time complexity of updating a short-term WKG or a long-
term WKG. Moreover, according to Equations (2) and (3), the
time complexity of sampling neighbors of a word isO(2dD),
where d is the number of samples. So it takes O(2dDV ) to
retrieve word co-occurrence information from a WKG.

6.2 Runtime Comparison
Here, we compare the runtime of our GDWE and baselines
by Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz. Let’s
take the training process of each model on NYT as an exam-
ple. Among all dynamic word embedding models, DW2V is

Year Neighbor words of “apple” in NYT
1 2 3 4 5

1993 blueberry chocolate tart mascarpone pie
2008 imac chips pc itunes server
2010 ipone chips server conagra itunes
2011 chips blackberry 3g android ipad
2016 microsoft android blackberry samsung google

Year Neighbor words of “network” in Arxiv
1 2 3 4 5

2010 wireless peertopeer connectivity p2p internet
2014 overlay multiplex vehicular peertopeer sensor
2017 overlay neural feedforward dnn generative
2018 neural convolutional feedforward cnn dnn
2019 neural gcn convolutional cnn capsule
2021 neural convolutional dnn cnn gcn

Table 4: Top-5 neighbor words of target words “apple” and “net-
work” in different years, where different noun forms of “network”
are normalized for clarity.

the fastest one, taking about 10 minutes to converge, but it
performed poorly in the cross-time alignment and text stream
classification tasks. GDWE w/o WKG only needed about 31
minutes for training. Because GDWE requires extra time
costs to update and retrieve knowledge in WKGs, it took
about 44 minutes to train. With a rational cost of time, GDWE
achieved better results than GDWE w/o WKG in many exper-
iments, that is, GDWE better balances the effectiveness and
efficiency of learning dynamic word embeddings. Because
both AW2V and TW2V need to pre-train static word embed-
dings on each time slice, which brings an extra time cost, they
cost about 73 and 152 minutes for training, respectively. Fi-
nally, although CW2V and DCWE performed competitively
in time-specific tasks, their time costs are quite high, which
were about 18.3 hours and 13.6 hours, respectively.

7 Conclusion
In this study, we propose a GDWE model to learn dynamic
word embeddings continuously, where WKGs are introduced
to encode and update long-term and short-term word co-
occurrence knowledge. To help GDWE capture semantic
drift even with limited contexts, we retrieve knowledge from
WKGs to update dynamic word embeddings. Theoretical
analysis and extensive experiments on cross-time alignment,
text stream classification, and qualitative analysis validate
the effectiveness of our model. Since how to apply contex-
tual word embeddings to dynamic conditions more properly
and efficiently remains to be studied, we will further explore
the differences of contextual and traditional embeddings in
the temporal scenario. Besides, as WKG provides an ef-
fective way to memorize past word co-occurrence informa-
tion and distinguish the change of word sense based on com-
mon neighbors, it has the potential to be combined with con-
textual embedding models by developing time-specific self-
supervised tasks using temporal co-occurrence knowledge.
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